Рассчитать высоту треугольника со сторонами 104, 63 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 63 + 47}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-104)(107-63)(107-47)}}{63}\normalsize = 29.2242871}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-104)(107-63)(107-47)}}{104}\normalsize = 17.7031739}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-104)(107-63)(107-47)}}{47}\normalsize = 39.1729806}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 63 и 47 равна 29.2242871
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 63 и 47 равна 17.7031739
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 63 и 47 равна 39.1729806
Ссылка на результат
?n1=104&n2=63&n3=47
Найти высоту треугольника со сторонами 25, 24 и 2
Найти высоту треугольника со сторонами 128, 76 и 60
Найти высоту треугольника со сторонами 144, 88 и 78
Найти высоту треугольника со сторонами 125, 111 и 111
Найти высоту треугольника со сторонами 91, 71 и 24
Найти высоту треугольника со сторонами 142, 101 и 59
Найти высоту треугольника со сторонами 128, 76 и 60
Найти высоту треугольника со сторонами 144, 88 и 78
Найти высоту треугольника со сторонами 125, 111 и 111
Найти высоту треугольника со сторонами 91, 71 и 24
Найти высоту треугольника со сторонами 142, 101 и 59