Рассчитать высоту треугольника со сторонами 104, 69 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 69 + 67}{2}} \normalsize = 120}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120(120-104)(120-69)(120-67)}}{69}\normalsize = 66.0320138}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120(120-104)(120-69)(120-67)}}{104}\normalsize = 43.8097014}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120(120-104)(120-69)(120-67)}}{67}\normalsize = 68.0031187}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 69 и 67 равна 66.0320138
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 69 и 67 равна 43.8097014
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 69 и 67 равна 68.0031187
Ссылка на результат
?n1=104&n2=69&n3=67
Найти высоту треугольника со сторонами 128, 122 и 70
Найти высоту треугольника со сторонами 116, 114 и 6
Найти высоту треугольника со сторонами 58, 42 и 21
Найти высоту треугольника со сторонами 98, 73 и 45
Найти высоту треугольника со сторонами 123, 119 и 30
Найти высоту треугольника со сторонами 116, 110 и 10
Найти высоту треугольника со сторонами 116, 114 и 6
Найти высоту треугольника со сторонами 58, 42 и 21
Найти высоту треугольника со сторонами 98, 73 и 45
Найти высоту треугольника со сторонами 123, 119 и 30
Найти высоту треугольника со сторонами 116, 110 и 10