Рассчитать высоту треугольника со сторонами 104, 71 и 69

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 71 + 69}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-104)(122-71)(122-69)}}{71}\normalsize = 68.6295004}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-104)(122-71)(122-69)}}{104}\normalsize = 46.852832}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-104)(122-71)(122-69)}}{69}\normalsize = 70.6187613}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 71 и 69 равна 68.6295004
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 71 и 69 равна 46.852832
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 71 и 69 равна 70.6187613
Ссылка на результат
?n1=104&n2=71&n3=69