Рассчитать высоту треугольника со сторонами 104, 78 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 78 + 39}{2}} \normalsize = 110.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110.5(110.5-104)(110.5-78)(110.5-39)}}{78}\normalsize = 33.1259172}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110.5(110.5-104)(110.5-78)(110.5-39)}}{104}\normalsize = 24.8444379}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110.5(110.5-104)(110.5-78)(110.5-39)}}{39}\normalsize = 66.2518344}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 78 и 39 равна 33.1259172
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 78 и 39 равна 24.8444379
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 78 и 39 равна 66.2518344
Ссылка на результат
?n1=104&n2=78&n3=39
Найти высоту треугольника со сторонами 150, 134 и 77
Найти высоту треугольника со сторонами 91, 66 и 58
Найти высоту треугольника со сторонами 150, 122 и 80
Найти высоту треугольника со сторонами 139, 81 и 71
Найти высоту треугольника со сторонами 86, 80 и 22
Найти высоту треугольника со сторонами 111, 94 и 90
Найти высоту треугольника со сторонами 91, 66 и 58
Найти высоту треугольника со сторонами 150, 122 и 80
Найти высоту треугольника со сторонами 139, 81 и 71
Найти высоту треугольника со сторонами 86, 80 и 22
Найти высоту треугольника со сторонами 111, 94 и 90