Рассчитать высоту треугольника со сторонами 104, 81 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 81 + 52}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-104)(118.5-81)(118.5-52)}}{81}\normalsize = 51.1110272}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-104)(118.5-81)(118.5-52)}}{104}\normalsize = 39.807627}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-104)(118.5-81)(118.5-52)}}{52}\normalsize = 79.615254}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 81 и 52 равна 51.1110272
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 81 и 52 равна 39.807627
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 81 и 52 равна 79.615254
Ссылка на результат
?n1=104&n2=81&n3=52
Найти высоту треугольника со сторонами 86, 69 и 30
Найти высоту треугольника со сторонами 123, 94 и 47
Найти высоту треугольника со сторонами 85, 56 и 34
Найти высоту треугольника со сторонами 145, 142 и 112
Найти высоту треугольника со сторонами 117, 116 и 116
Найти высоту треугольника со сторонами 111, 108 и 102
Найти высоту треугольника со сторонами 123, 94 и 47
Найти высоту треугольника со сторонами 85, 56 и 34
Найти высоту треугольника со сторонами 145, 142 и 112
Найти высоту треугольника со сторонами 117, 116 и 116
Найти высоту треугольника со сторонами 111, 108 и 102