Рассчитать высоту треугольника со сторонами 104, 82 и 47

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 82 + 47}{2}} \normalsize = 116.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116.5(116.5-104)(116.5-82)(116.5-47)}}{82}\normalsize = 45.5759849}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116.5(116.5-104)(116.5-82)(116.5-47)}}{104}\normalsize = 35.9349111}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116.5(116.5-104)(116.5-82)(116.5-47)}}{47}\normalsize = 79.5155481}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 82 и 47 равна 45.5759849
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 82 и 47 равна 35.9349111
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 82 и 47 равна 79.5155481
Ссылка на результат
?n1=104&n2=82&n3=47