Рассчитать высоту треугольника со сторонами 104, 83 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 83 + 56}{2}} \normalsize = 121.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121.5(121.5-104)(121.5-83)(121.5-56)}}{83}\normalsize = 55.7969014}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121.5(121.5-104)(121.5-83)(121.5-56)}}{104}\normalsize = 44.5302194}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121.5(121.5-104)(121.5-83)(121.5-56)}}{56}\normalsize = 82.6989788}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 83 и 56 равна 55.7969014
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 83 и 56 равна 44.5302194
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 83 и 56 равна 82.6989788
Ссылка на результат
?n1=104&n2=83&n3=56
Найти высоту треугольника со сторонами 118, 73 и 51
Найти высоту треугольника со сторонами 123, 111 и 91
Найти высоту треугольника со сторонами 48, 27 и 27
Найти высоту треугольника со сторонами 109, 105 и 87
Найти высоту треугольника со сторонами 118, 77 и 67
Найти высоту треугольника со сторонами 117, 91 и 90
Найти высоту треугольника со сторонами 123, 111 и 91
Найти высоту треугольника со сторонами 48, 27 и 27
Найти высоту треугольника со сторонами 109, 105 и 87
Найти высоту треугольника со сторонами 118, 77 и 67
Найти высоту треугольника со сторонами 117, 91 и 90