Рассчитать высоту треугольника со сторонами 104, 85 и 76
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 85 + 76}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-104)(132.5-85)(132.5-76)}}{85}\normalsize = 74.9052862}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-104)(132.5-85)(132.5-76)}}{104}\normalsize = 61.2206666}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-104)(132.5-85)(132.5-76)}}{76}\normalsize = 83.7756491}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 85 и 76 равна 74.9052862
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 85 и 76 равна 61.2206666
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 85 и 76 равна 83.7756491
Ссылка на результат
?n1=104&n2=85&n3=76
Найти высоту треугольника со сторонами 67, 66 и 39
Найти высоту треугольника со сторонами 145, 142 и 82
Найти высоту треугольника со сторонами 89, 80 и 10
Найти высоту треугольника со сторонами 123, 78 и 49
Найти высоту треугольника со сторонами 111, 110 и 106
Найти высоту треугольника со сторонами 75, 72 и 33
Найти высоту треугольника со сторонами 145, 142 и 82
Найти высоту треугольника со сторонами 89, 80 и 10
Найти высоту треугольника со сторонами 123, 78 и 49
Найти высоту треугольника со сторонами 111, 110 и 106
Найти высоту треугольника со сторонами 75, 72 и 33