Рассчитать высоту треугольника со сторонами 104, 87 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 87 + 66}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-104)(128.5-87)(128.5-66)}}{87}\normalsize = 65.6915344}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-104)(128.5-87)(128.5-66)}}{104}\normalsize = 54.9534951}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-104)(128.5-87)(128.5-66)}}{66}\normalsize = 86.5933863}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 87 и 66 равна 65.6915344
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 87 и 66 равна 54.9534951
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 87 и 66 равна 86.5933863
Ссылка на результат
?n1=104&n2=87&n3=66
Найти высоту треугольника со сторонами 93, 93 и 74
Найти высоту треугольника со сторонами 77, 59 и 46
Найти высоту треугольника со сторонами 145, 129 и 17
Найти высоту треугольника со сторонами 111, 106 и 75
Найти высоту треугольника со сторонами 70, 70 и 43
Найти высоту треугольника со сторонами 129, 129 и 10
Найти высоту треугольника со сторонами 77, 59 и 46
Найти высоту треугольника со сторонами 145, 129 и 17
Найти высоту треугольника со сторонами 111, 106 и 75
Найти высоту треугольника со сторонами 70, 70 и 43
Найти высоту треугольника со сторонами 129, 129 и 10