Рассчитать высоту треугольника со сторонами 104, 94 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 94 + 68}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-104)(133-94)(133-68)}}{94}\normalsize = 66.5297579}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-104)(133-94)(133-68)}}{104}\normalsize = 60.1326658}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-104)(133-94)(133-68)}}{68}\normalsize = 91.9676066}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 94 и 68 равна 66.5297579
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 94 и 68 равна 60.1326658
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 94 и 68 равна 91.9676066
Ссылка на результат
?n1=104&n2=94&n3=68
Найти высоту треугольника со сторонами 141, 118 и 92
Найти высоту треугольника со сторонами 63, 56 и 43
Найти высоту треугольника со сторонами 148, 141 и 22
Найти высоту треугольника со сторонами 48, 34 и 16
Найти высоту треугольника со сторонами 85, 72 и 51
Найти высоту треугольника со сторонами 82, 54 и 32
Найти высоту треугольника со сторонами 63, 56 и 43
Найти высоту треугольника со сторонами 148, 141 и 22
Найти высоту треугольника со сторонами 48, 34 и 16
Найти высоту треугольника со сторонами 85, 72 и 51
Найти высоту треугольника со сторонами 82, 54 и 32