Рассчитать высоту треугольника со сторонами 104, 95 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 95 + 25}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-104)(112-95)(112-25)}}{95}\normalsize = 24.2350814}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-104)(112-95)(112-25)}}{104}\normalsize = 22.1378147}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-104)(112-95)(112-25)}}{25}\normalsize = 92.0933092}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 95 и 25 равна 24.2350814
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 95 и 25 равна 22.1378147
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 95 и 25 равна 92.0933092
Ссылка на результат
?n1=104&n2=95&n3=25
Найти высоту треугольника со сторонами 147, 144 и 41
Найти высоту треугольника со сторонами 44, 37 и 12
Найти высоту треугольника со сторонами 142, 99 и 78
Найти высоту треугольника со сторонами 108, 94 и 82
Найти высоту треугольника со сторонами 134, 131 и 103
Найти высоту треугольника со сторонами 123, 104 и 94
Найти высоту треугольника со сторонами 44, 37 и 12
Найти высоту треугольника со сторонами 142, 99 и 78
Найти высоту треугольника со сторонами 108, 94 и 82
Найти высоту треугольника со сторонами 134, 131 и 103
Найти высоту треугольника со сторонами 123, 104 и 94