Рассчитать высоту треугольника со сторонами 104, 95 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 95 + 50}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-104)(124.5-95)(124.5-50)}}{95}\normalsize = 49.8605587}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-104)(124.5-95)(124.5-50)}}{104}\normalsize = 45.5457027}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-104)(124.5-95)(124.5-50)}}{50}\normalsize = 94.7350616}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 95 и 50 равна 49.8605587
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 95 и 50 равна 45.5457027
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 95 и 50 равна 94.7350616
Ссылка на результат
?n1=104&n2=95&n3=50
Найти высоту треугольника со сторонами 140, 131 и 23
Найти высоту треугольника со сторонами 127, 74 и 59
Найти высоту треугольника со сторонами 97, 74 и 73
Найти высоту треугольника со сторонами 59, 41 и 41
Найти высоту треугольника со сторонами 145, 104 и 102
Найти высоту треугольника со сторонами 137, 130 и 43
Найти высоту треугольника со сторонами 127, 74 и 59
Найти высоту треугольника со сторонами 97, 74 и 73
Найти высоту треугольника со сторонами 59, 41 и 41
Найти высоту треугольника со сторонами 145, 104 и 102
Найти высоту треугольника со сторонами 137, 130 и 43