Рассчитать высоту треугольника со сторонами 104, 95 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 95 + 86}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-104)(142.5-95)(142.5-86)}}{95}\normalsize = 80.7821144}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-104)(142.5-95)(142.5-86)}}{104}\normalsize = 73.7913545}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-104)(142.5-95)(142.5-86)}}{86}\normalsize = 89.2360566}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 95 и 86 равна 80.7821144
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 95 и 86 равна 73.7913545
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 95 и 86 равна 89.2360566
Ссылка на результат
?n1=104&n2=95&n3=86
Найти высоту треугольника со сторонами 92, 65 и 41
Найти высоту треугольника со сторонами 115, 106 и 76
Найти высоту треугольника со сторонами 113, 92 и 33
Найти высоту треугольника со сторонами 143, 134 и 56
Найти высоту треугольника со сторонами 84, 62 и 24
Найти высоту треугольника со сторонами 141, 141 и 137
Найти высоту треугольника со сторонами 115, 106 и 76
Найти высоту треугольника со сторонами 113, 92 и 33
Найти высоту треугольника со сторонами 143, 134 и 56
Найти высоту треугольника со сторонами 84, 62 и 24
Найти высоту треугольника со сторонами 141, 141 и 137