Рассчитать высоту треугольника со сторонами 104, 96 и 65

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 96 + 65}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-104)(132.5-96)(132.5-65)}}{96}\normalsize = 63.5458876}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-104)(132.5-96)(132.5-65)}}{104}\normalsize = 58.6577424}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-104)(132.5-96)(132.5-65)}}{65}\normalsize = 93.8523879}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 96 и 65 равна 63.5458876
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 96 и 65 равна 58.6577424
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 96 и 65 равна 93.8523879
Ссылка на результат
?n1=104&n2=96&n3=65