Рассчитать высоту треугольника со сторонами 104, 97 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 97 + 71}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-104)(136-97)(136-71)}}{97}\normalsize = 68.4844049}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-104)(136-97)(136-71)}}{104}\normalsize = 63.8748777}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-104)(136-97)(136-71)}}{71}\normalsize = 93.5632011}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 97 и 71 равна 68.4844049
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 97 и 71 равна 63.8748777
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 97 и 71 равна 93.5632011
Ссылка на результат
?n1=104&n2=97&n3=71
Найти высоту треугольника со сторонами 150, 140 и 76
Найти высоту треугольника со сторонами 71, 70 и 70
Найти высоту треугольника со сторонами 113, 113 и 54
Найти высоту треугольника со сторонами 124, 111 и 70
Найти высоту треугольника со сторонами 132, 89 и 88
Найти высоту треугольника со сторонами 144, 136 и 132
Найти высоту треугольника со сторонами 71, 70 и 70
Найти высоту треугольника со сторонами 113, 113 и 54
Найти высоту треугольника со сторонами 124, 111 и 70
Найти высоту треугольника со сторонами 132, 89 и 88
Найти высоту треугольника со сторонами 144, 136 и 132