Рассчитать высоту треугольника со сторонами 104, 97 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 97 + 93}{2}} \normalsize = 147}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147(147-104)(147-97)(147-93)}}{97}\normalsize = 85.1790984}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147(147-104)(147-97)(147-93)}}{104}\normalsize = 79.4458898}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147(147-104)(147-97)(147-93)}}{93}\normalsize = 88.8427155}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 97 и 93 равна 85.1790984
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 97 и 93 равна 79.4458898
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 97 и 93 равна 88.8427155
Ссылка на результат
?n1=104&n2=97&n3=93
Найти высоту треугольника со сторонами 145, 136 и 20
Найти высоту треугольника со сторонами 131, 90 и 50
Найти высоту треугольника со сторонами 117, 105 и 96
Найти высоту треугольника со сторонами 101, 88 и 63
Найти высоту треугольника со сторонами 147, 138 и 112
Найти высоту треугольника со сторонами 145, 124 и 53
Найти высоту треугольника со сторонами 131, 90 и 50
Найти высоту треугольника со сторонами 117, 105 и 96
Найти высоту треугольника со сторонами 101, 88 и 63
Найти высоту треугольника со сторонами 147, 138 и 112
Найти высоту треугольника со сторонами 145, 124 и 53