Рассчитать высоту треугольника со сторонами 104, 99 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 99 + 51}{2}} \normalsize = 127}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127(127-104)(127-99)(127-51)}}{99}\normalsize = 50.3670357}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127(127-104)(127-99)(127-51)}}{104}\normalsize = 47.9455436}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127(127-104)(127-99)(127-51)}}{51}\normalsize = 97.7713045}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 99 и 51 равна 50.3670357
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 99 и 51 равна 47.9455436
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 99 и 51 равна 97.7713045
Ссылка на результат
?n1=104&n2=99&n3=51
Найти высоту треугольника со сторонами 83, 81 и 70
Найти высоту треугольника со сторонами 133, 104 и 42
Найти высоту треугольника со сторонами 50, 44 и 10
Найти высоту треугольника со сторонами 104, 86 и 28
Найти высоту треугольника со сторонами 111, 90 и 42
Найти высоту треугольника со сторонами 111, 102 и 81
Найти высоту треугольника со сторонами 133, 104 и 42
Найти высоту треугольника со сторонами 50, 44 и 10
Найти высоту треугольника со сторонами 104, 86 и 28
Найти высоту треугольника со сторонами 111, 90 и 42
Найти высоту треугольника со сторонами 111, 102 и 81