Рассчитать высоту треугольника со сторонами 104, 99 и 6

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 99 + 6}{2}} \normalsize = 104.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104.5(104.5-104)(104.5-99)(104.5-6)}}{99}\normalsize = 3.39889234}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104.5(104.5-104)(104.5-99)(104.5-6)}}{104}\normalsize = 3.23548405}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104.5(104.5-104)(104.5-99)(104.5-6)}}{6}\normalsize = 56.0817236}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 99 и 6 равна 3.39889234
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 99 и 6 равна 3.23548405
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 99 и 6 равна 56.0817236
Ссылка на результат
?n1=104&n2=99&n3=6