Рассчитать высоту треугольника со сторонами 105, 102 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 102 + 93}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-105)(150-102)(150-93)}}{102}\normalsize = 84.263551}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-105)(150-102)(150-93)}}{105}\normalsize = 81.8560209}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-105)(150-102)(150-93)}}{93}\normalsize = 92.4180882}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 102 и 93 равна 84.263551
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 102 и 93 равна 81.8560209
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 102 и 93 равна 92.4180882
Ссылка на результат
?n1=105&n2=102&n3=93
Найти высоту треугольника со сторонами 100, 69 и 33
Найти высоту треугольника со сторонами 123, 95 и 58
Найти высоту треугольника со сторонами 142, 106 и 97
Найти высоту треугольника со сторонами 135, 135 и 84
Найти высоту треугольника со сторонами 150, 120 и 97
Найти высоту треугольника со сторонами 141, 99 и 52
Найти высоту треугольника со сторонами 123, 95 и 58
Найти высоту треугольника со сторонами 142, 106 и 97
Найти высоту треугольника со сторонами 135, 135 и 84
Найти высоту треугольника со сторонами 150, 120 и 97
Найти высоту треугольника со сторонами 141, 99 и 52