Рассчитать высоту треугольника со сторонами 105, 59 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 59 + 54}{2}} \normalsize = 109}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109(109-105)(109-59)(109-54)}}{59}\normalsize = 37.1182571}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109(109-105)(109-59)(109-54)}}{105}\normalsize = 20.8569254}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109(109-105)(109-59)(109-54)}}{54}\normalsize = 40.5551328}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 59 и 54 равна 37.1182571
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 59 и 54 равна 20.8569254
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 59 и 54 равна 40.5551328
Ссылка на результат
?n1=105&n2=59&n3=54
Найти высоту треугольника со сторонами 90, 48 и 46
Найти высоту треугольника со сторонами 95, 87 и 68
Найти высоту треугольника со сторонами 142, 133 и 100
Найти высоту треугольника со сторонами 106, 100 и 58
Найти высоту треугольника со сторонами 150, 133 и 133
Найти высоту треугольника со сторонами 124, 108 и 96
Найти высоту треугольника со сторонами 95, 87 и 68
Найти высоту треугольника со сторонами 142, 133 и 100
Найти высоту треугольника со сторонами 106, 100 и 58
Найти высоту треугольника со сторонами 150, 133 и 133
Найти высоту треугольника со сторонами 124, 108 и 96