Рассчитать высоту треугольника со сторонами 105, 66 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 66 + 55}{2}} \normalsize = 113}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113(113-105)(113-66)(113-55)}}{66}\normalsize = 47.5700054}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113(113-105)(113-66)(113-55)}}{105}\normalsize = 29.9011463}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113(113-105)(113-66)(113-55)}}{55}\normalsize = 57.0840065}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 66 и 55 равна 47.5700054
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 66 и 55 равна 29.9011463
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 66 и 55 равна 57.0840065
Ссылка на результат
?n1=105&n2=66&n3=55
Найти высоту треугольника со сторонами 119, 116 и 72
Найти высоту треугольника со сторонами 137, 137 и 79
Найти высоту треугольника со сторонами 82, 81 и 50
Найти высоту треугольника со сторонами 48, 45 и 4
Найти высоту треугольника со сторонами 132, 116 и 106
Найти высоту треугольника со сторонами 95, 75 и 29
Найти высоту треугольника со сторонами 137, 137 и 79
Найти высоту треугольника со сторонами 82, 81 и 50
Найти высоту треугольника со сторонами 48, 45 и 4
Найти высоту треугольника со сторонами 132, 116 и 106
Найти высоту треугольника со сторонами 95, 75 и 29