Рассчитать высоту треугольника со сторонами 105, 82 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 82 + 34}{2}} \normalsize = 110.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110.5(110.5-105)(110.5-82)(110.5-34)}}{82}\normalsize = 28.0757764}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110.5(110.5-105)(110.5-82)(110.5-34)}}{105}\normalsize = 21.9258444}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110.5(110.5-105)(110.5-82)(110.5-34)}}{34}\normalsize = 67.7121666}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 82 и 34 равна 28.0757764
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 82 и 34 равна 21.9258444
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 82 и 34 равна 67.7121666
Ссылка на результат
?n1=105&n2=82&n3=34
Найти высоту треугольника со сторонами 141, 131 и 81
Найти высоту треугольника со сторонами 112, 111 и 26
Найти высоту треугольника со сторонами 108, 104 и 39
Найти высоту треугольника со сторонами 141, 136 и 106
Найти высоту треугольника со сторонами 120, 90 и 86
Найти высоту треугольника со сторонами 150, 125 и 54
Найти высоту треугольника со сторонами 112, 111 и 26
Найти высоту треугольника со сторонами 108, 104 и 39
Найти высоту треугольника со сторонами 141, 136 и 106
Найти высоту треугольника со сторонами 120, 90 и 86
Найти высоту треугольника со сторонами 150, 125 и 54