Рассчитать высоту треугольника со сторонами 105, 82 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 82 + 45}{2}} \normalsize = 116}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116(116-105)(116-82)(116-45)}}{82}\normalsize = 42.8065388}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116(116-105)(116-82)(116-45)}}{105}\normalsize = 33.4298684}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116(116-105)(116-82)(116-45)}}{45}\normalsize = 78.0030262}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 82 и 45 равна 42.8065388
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 82 и 45 равна 33.4298684
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 82 и 45 равна 78.0030262
Ссылка на результат
?n1=105&n2=82&n3=45
Найти высоту треугольника со сторонами 107, 76 и 71
Найти высоту треугольника со сторонами 147, 130 и 55
Найти высоту треугольника со сторонами 124, 114 и 112
Найти высоту треугольника со сторонами 82, 82 и 6
Найти высоту треугольника со сторонами 109, 82 и 70
Найти высоту треугольника со сторонами 128, 111 и 95
Найти высоту треугольника со сторонами 147, 130 и 55
Найти высоту треугольника со сторонами 124, 114 и 112
Найти высоту треугольника со сторонами 82, 82 и 6
Найти высоту треугольника со сторонами 109, 82 и 70
Найти высоту треугольника со сторонами 128, 111 и 95