Рассчитать высоту треугольника со сторонами 105, 86 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 86 + 83}{2}} \normalsize = 137}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137(137-105)(137-86)(137-83)}}{86}\normalsize = 80.8069631}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137(137-105)(137-86)(137-83)}}{105}\normalsize = 66.1847507}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137(137-105)(137-86)(137-83)}}{83}\normalsize = 83.7276967}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 86 и 83 равна 80.8069631
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 86 и 83 равна 66.1847507
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 86 и 83 равна 83.7276967
Ссылка на результат
?n1=105&n2=86&n3=83
Найти высоту треугольника со сторонами 137, 123 и 53
Найти высоту треугольника со сторонами 125, 92 и 43
Найти высоту треугольника со сторонами 79, 77 и 5
Найти высоту треугольника со сторонами 136, 105 и 55
Найти высоту треугольника со сторонами 89, 80 и 69
Найти высоту треугольника со сторонами 113, 104 и 21
Найти высоту треугольника со сторонами 125, 92 и 43
Найти высоту треугольника со сторонами 79, 77 и 5
Найти высоту треугольника со сторонами 136, 105 и 55
Найти высоту треугольника со сторонами 89, 80 и 69
Найти высоту треугольника со сторонами 113, 104 и 21