Рассчитать высоту треугольника со сторонами 105, 88 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 88 + 22}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-105)(107.5-88)(107.5-22)}}{88}\normalsize = 15.2132472}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-105)(107.5-88)(107.5-22)}}{105}\normalsize = 12.7501501}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-105)(107.5-88)(107.5-22)}}{22}\normalsize = 60.8529889}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 88 и 22 равна 15.2132472
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 88 и 22 равна 12.7501501
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 88 и 22 равна 60.8529889
Ссылка на результат
?n1=105&n2=88&n3=22
Найти высоту треугольника со сторонами 132, 129 и 90
Найти высоту треугольника со сторонами 119, 97 и 89
Найти высоту треугольника со сторонами 89, 80 и 26
Найти высоту треугольника со сторонами 139, 137 и 137
Найти высоту треугольника со сторонами 141, 103 и 85
Найти высоту треугольника со сторонами 143, 135 и 88
Найти высоту треугольника со сторонами 119, 97 и 89
Найти высоту треугольника со сторонами 89, 80 и 26
Найти высоту треугольника со сторонами 139, 137 и 137
Найти высоту треугольника со сторонами 141, 103 и 85
Найти высоту треугольника со сторонами 143, 135 и 88