Рассчитать высоту треугольника со сторонами 105, 91 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 91 + 26}{2}} \normalsize = 111}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111(111-105)(111-91)(111-26)}}{91}\normalsize = 23.3856895}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111(111-105)(111-91)(111-26)}}{105}\normalsize = 20.2675975}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111(111-105)(111-91)(111-26)}}{26}\normalsize = 81.8499132}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 91 и 26 равна 23.3856895
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 91 и 26 равна 20.2675975
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 91 и 26 равна 81.8499132
Ссылка на результат
?n1=105&n2=91&n3=26
Найти высоту треугольника со сторонами 106, 69 и 55
Найти высоту треугольника со сторонами 126, 112 и 63
Найти высоту треугольника со сторонами 99, 85 и 41
Найти высоту треугольника со сторонами 14, 14 и 1
Найти высоту треугольника со сторонами 126, 121 и 25
Найти высоту треугольника со сторонами 126, 96 и 68
Найти высоту треугольника со сторонами 126, 112 и 63
Найти высоту треугольника со сторонами 99, 85 и 41
Найти высоту треугольника со сторонами 14, 14 и 1
Найти высоту треугольника со сторонами 126, 121 и 25
Найти высоту треугольника со сторонами 126, 96 и 68