Рассчитать высоту треугольника со сторонами 105, 91 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 91 + 49}{2}} \normalsize = 122.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122.5(122.5-105)(122.5-91)(122.5-49)}}{91}\normalsize = 48.963744}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122.5(122.5-105)(122.5-91)(122.5-49)}}{105}\normalsize = 42.4352448}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122.5(122.5-105)(122.5-91)(122.5-49)}}{49}\normalsize = 90.9326674}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 91 и 49 равна 48.963744
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 91 и 49 равна 42.4352448
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 91 и 49 равна 90.9326674
Ссылка на результат
?n1=105&n2=91&n3=49
Найти высоту треугольника со сторонами 127, 126 и 28
Найти высоту треугольника со сторонами 78, 70 и 51
Найти высоту треугольника со сторонами 137, 119 и 92
Найти высоту треугольника со сторонами 110, 93 и 54
Найти высоту треугольника со сторонами 46, 40 и 7
Найти высоту треугольника со сторонами 148, 101 и 95
Найти высоту треугольника со сторонами 78, 70 и 51
Найти высоту треугольника со сторонами 137, 119 и 92
Найти высоту треугольника со сторонами 110, 93 и 54
Найти высоту треугольника со сторонами 46, 40 и 7
Найти высоту треугольника со сторонами 148, 101 и 95