Рассчитать высоту треугольника со сторонами 105, 93 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 93 + 82}{2}} \normalsize = 140}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140(140-105)(140-93)(140-82)}}{93}\normalsize = 78.5973698}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140(140-105)(140-93)(140-82)}}{105}\normalsize = 69.6148132}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140(140-105)(140-93)(140-82)}}{82}\normalsize = 89.1409194}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 93 и 82 равна 78.5973698
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 93 и 82 равна 69.6148132
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 93 и 82 равна 89.1409194
Ссылка на результат
?n1=105&n2=93&n3=82
Найти высоту треугольника со сторонами 110, 108 и 23
Найти высоту треугольника со сторонами 148, 123 и 90
Найти высоту треугольника со сторонами 109, 73 и 66
Найти высоту треугольника со сторонами 99, 77 и 59
Найти высоту треугольника со сторонами 92, 90 и 38
Найти высоту треугольника со сторонами 90, 84 и 84
Найти высоту треугольника со сторонами 148, 123 и 90
Найти высоту треугольника со сторонами 109, 73 и 66
Найти высоту треугольника со сторонами 99, 77 и 59
Найти высоту треугольника со сторонами 92, 90 и 38
Найти высоту треугольника со сторонами 90, 84 и 84