Рассчитать высоту треугольника со сторонами 105, 99 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 99 + 42}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-105)(123-99)(123-42)}}{99}\normalsize = 41.9113586}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-105)(123-99)(123-42)}}{105}\normalsize = 39.5164239}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-105)(123-99)(123-42)}}{42}\normalsize = 98.7910597}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 99 и 42 равна 41.9113586
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 99 и 42 равна 39.5164239
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 99 и 42 равна 98.7910597
Ссылка на результат
?n1=105&n2=99&n3=42
Найти высоту треугольника со сторонами 125, 119 и 13
Найти высоту треугольника со сторонами 102, 90 и 72
Найти высоту треугольника со сторонами 130, 109 и 96
Найти высоту треугольника со сторонами 126, 116 и 87
Найти высоту треугольника со сторонами 137, 92 и 65
Найти высоту треугольника со сторонами 9, 9 и 4
Найти высоту треугольника со сторонами 102, 90 и 72
Найти высоту треугольника со сторонами 130, 109 и 96
Найти высоту треугольника со сторонами 126, 116 и 87
Найти высоту треугольника со сторонами 137, 92 и 65
Найти высоту треугольника со сторонами 9, 9 и 4