Рассчитать высоту треугольника со сторонами 106, 100 и 91
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 100 + 91}{2}} \normalsize = 148.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148.5(148.5-106)(148.5-100)(148.5-91)}}{100}\normalsize = 83.9058959}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148.5(148.5-106)(148.5-100)(148.5-91)}}{106}\normalsize = 79.1565056}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148.5(148.5-106)(148.5-100)(148.5-91)}}{91}\normalsize = 92.2042813}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 100 и 91 равна 83.9058959
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 100 и 91 равна 79.1565056
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 100 и 91 равна 92.2042813
Ссылка на результат
?n1=106&n2=100&n3=91
Найти высоту треугольника со сторонами 102, 70 и 52
Найти высоту треугольника со сторонами 98, 50 и 50
Найти высоту треугольника со сторонами 84, 51 и 43
Найти высоту треугольника со сторонами 149, 141 и 88
Найти высоту треугольника со сторонами 110, 70 и 48
Найти высоту треугольника со сторонами 114, 101 и 60
Найти высоту треугольника со сторонами 98, 50 и 50
Найти высоту треугольника со сторонами 84, 51 и 43
Найти высоту треугольника со сторонами 149, 141 и 88
Найти высоту треугольника со сторонами 110, 70 и 48
Найти высоту треугольника со сторонами 114, 101 и 60