Рассчитать высоту треугольника со сторонами 106, 102 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 102 + 33}{2}} \normalsize = 120.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120.5(120.5-106)(120.5-102)(120.5-33)}}{102}\normalsize = 32.9759442}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120.5(120.5-106)(120.5-102)(120.5-33)}}{106}\normalsize = 31.7315689}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120.5(120.5-106)(120.5-102)(120.5-33)}}{33}\normalsize = 101.925646}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 102 и 33 равна 32.9759442
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 102 и 33 равна 31.7315689
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 102 и 33 равна 101.925646
Ссылка на результат
?n1=106&n2=102&n3=33
Найти высоту треугольника со сторонами 147, 119 и 85
Найти высоту треугольника со сторонами 129, 127 и 5
Найти высоту треугольника со сторонами 50, 43 и 14
Найти высоту треугольника со сторонами 85, 68 и 68
Найти высоту треугольника со сторонами 83, 64 и 29
Найти высоту треугольника со сторонами 132, 125 и 49
Найти высоту треугольника со сторонами 129, 127 и 5
Найти высоту треугольника со сторонами 50, 43 и 14
Найти высоту треугольника со сторонами 85, 68 и 68
Найти высоту треугольника со сторонами 83, 64 и 29
Найти высоту треугольника со сторонами 132, 125 и 49