Рассчитать высоту треугольника со сторонами 106, 102 и 91
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 102 + 91}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-106)(149.5-102)(149.5-91)}}{102}\normalsize = 83.3527219}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-106)(149.5-102)(149.5-91)}}{106}\normalsize = 80.2073362}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-106)(149.5-102)(149.5-91)}}{91}\normalsize = 93.4283257}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 102 и 91 равна 83.3527219
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 102 и 91 равна 80.2073362
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 102 и 91 равна 93.4283257
Ссылка на результат
?n1=106&n2=102&n3=91
Найти высоту треугольника со сторонами 62, 61 и 34
Найти высоту треугольника со сторонами 109, 106 и 49
Найти высоту треугольника со сторонами 95, 84 и 60
Найти высоту треугольника со сторонами 139, 114 и 109
Найти высоту треугольника со сторонами 148, 106 и 102
Найти высоту треугольника со сторонами 102, 83 и 49
Найти высоту треугольника со сторонами 109, 106 и 49
Найти высоту треугольника со сторонами 95, 84 и 60
Найти высоту треугольника со сторонами 139, 114 и 109
Найти высоту треугольника со сторонами 148, 106 и 102
Найти высоту треугольника со сторонами 102, 83 и 49