Рассчитать высоту треугольника со сторонами 106, 74 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 74 + 62}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-106)(121-74)(121-62)}}{74}\normalsize = 60.6333447}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-106)(121-74)(121-62)}}{106}\normalsize = 42.3289387}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-106)(121-74)(121-62)}}{62}\normalsize = 72.3688307}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 74 и 62 равна 60.6333447
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 74 и 62 равна 42.3289387
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 74 и 62 равна 72.3688307
Ссылка на результат
?n1=106&n2=74&n3=62
Найти высоту треугольника со сторонами 148, 114 и 64
Найти высоту треугольника со сторонами 147, 139 и 105
Найти высоту треугольника со сторонами 131, 121 и 72
Найти высоту треугольника со сторонами 147, 121 и 49
Найти высоту треугольника со сторонами 112, 109 и 80
Найти высоту треугольника со сторонами 103, 99 и 66
Найти высоту треугольника со сторонами 147, 139 и 105
Найти высоту треугольника со сторонами 131, 121 и 72
Найти высоту треугольника со сторонами 147, 121 и 49
Найти высоту треугольника со сторонами 112, 109 и 80
Найти высоту треугольника со сторонами 103, 99 и 66