Рассчитать высоту треугольника со сторонами 106, 74 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 74 + 64}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-106)(122-74)(122-64)}}{74}\normalsize = 63.0046782}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-106)(122-74)(122-64)}}{106}\normalsize = 43.984398}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-106)(122-74)(122-64)}}{64}\normalsize = 72.8491592}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 74 и 64 равна 63.0046782
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 74 и 64 равна 43.984398
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 74 и 64 равна 72.8491592
Ссылка на результат
?n1=106&n2=74&n3=64
Найти высоту треугольника со сторонами 94, 93 и 25
Найти высоту треугольника со сторонами 124, 122 и 65
Найти высоту треугольника со сторонами 64, 62 и 3
Найти высоту треугольника со сторонами 93, 93 и 79
Найти высоту треугольника со сторонами 125, 113 и 23
Найти высоту треугольника со сторонами 124, 107 и 49
Найти высоту треугольника со сторонами 124, 122 и 65
Найти высоту треугольника со сторонами 64, 62 и 3
Найти высоту треугольника со сторонами 93, 93 и 79
Найти высоту треугольника со сторонами 125, 113 и 23
Найти высоту треугольника со сторонами 124, 107 и 49