Рассчитать высоту треугольника со сторонами 106, 80 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 80 + 48}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-106)(117-80)(117-48)}}{80}\normalsize = 45.3163257}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-106)(117-80)(117-48)}}{106}\normalsize = 34.2010005}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-106)(117-80)(117-48)}}{48}\normalsize = 75.5272095}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 80 и 48 равна 45.3163257
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 80 и 48 равна 34.2010005
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 80 и 48 равна 75.5272095
Ссылка на результат
?n1=106&n2=80&n3=48
Найти высоту треугольника со сторонами 94, 77 и 29
Найти высоту треугольника со сторонами 95, 86 и 68
Найти высоту треугольника со сторонами 119, 99 и 66
Найти высоту треугольника со сторонами 149, 132 и 123
Найти высоту треугольника со сторонами 138, 77 и 74
Найти высоту треугольника со сторонами 15, 12 и 6
Найти высоту треугольника со сторонами 95, 86 и 68
Найти высоту треугольника со сторонами 119, 99 и 66
Найти высоту треугольника со сторонами 149, 132 и 123
Найти высоту треугольника со сторонами 138, 77 и 74
Найти высоту треугольника со сторонами 15, 12 и 6