Рассчитать высоту треугольника со сторонами 106, 81 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 81 + 26}{2}} \normalsize = 106.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106.5(106.5-106)(106.5-81)(106.5-26)}}{81}\normalsize = 8.16343263}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106.5(106.5-106)(106.5-81)(106.5-26)}}{106}\normalsize = 6.23809475}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106.5(106.5-106)(106.5-81)(106.5-26)}}{26}\normalsize = 25.4322324}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 81 и 26 равна 8.16343263
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 81 и 26 равна 6.23809475
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 81 и 26 равна 25.4322324
Ссылка на результат
?n1=106&n2=81&n3=26
Найти высоту треугольника со сторонами 144, 114 и 47
Найти высоту треугольника со сторонами 48, 47 и 34
Найти высоту треугольника со сторонами 102, 101 и 96
Найти высоту треугольника со сторонами 139, 108 и 81
Найти высоту треугольника со сторонами 90, 86 и 74
Найти высоту треугольника со сторонами 132, 112 и 91
Найти высоту треугольника со сторонами 48, 47 и 34
Найти высоту треугольника со сторонами 102, 101 и 96
Найти высоту треугольника со сторонами 139, 108 и 81
Найти высоту треугольника со сторонами 90, 86 и 74
Найти высоту треугольника со сторонами 132, 112 и 91