Рассчитать высоту треугольника со сторонами 106, 84 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 84 + 40}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-106)(115-84)(115-40)}}{84}\normalsize = 36.9345118}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-106)(115-84)(115-40)}}{106}\normalsize = 29.2688584}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-106)(115-84)(115-40)}}{40}\normalsize = 77.5624748}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 84 и 40 равна 36.9345118
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 84 и 40 равна 29.2688584
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 84 и 40 равна 77.5624748
Ссылка на результат
?n1=106&n2=84&n3=40
Найти высоту треугольника со сторонами 92, 72 и 72
Найти высоту треугольника со сторонами 112, 77 и 39
Найти высоту треугольника со сторонами 91, 88 и 61
Найти высоту треугольника со сторонами 66, 65 и 50
Найти высоту треугольника со сторонами 85, 84 и 50
Найти высоту треугольника со сторонами 139, 105 и 46
Найти высоту треугольника со сторонами 112, 77 и 39
Найти высоту треугольника со сторонами 91, 88 и 61
Найти высоту треугольника со сторонами 66, 65 и 50
Найти высоту треугольника со сторонами 85, 84 и 50
Найти высоту треугольника со сторонами 139, 105 и 46