Рассчитать высоту треугольника со сторонами 106, 85 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 85 + 62}{2}} \normalsize = 126.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126.5(126.5-106)(126.5-85)(126.5-62)}}{85}\normalsize = 61.9922171}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126.5(126.5-106)(126.5-85)(126.5-62)}}{106}\normalsize = 49.7107401}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126.5(126.5-106)(126.5-85)(126.5-62)}}{62}\normalsize = 84.9893299}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 85 и 62 равна 61.9922171
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 85 и 62 равна 49.7107401
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 85 и 62 равна 84.9893299
Ссылка на результат
?n1=106&n2=85&n3=62
Найти высоту треугольника со сторонами 140, 127 и 92
Найти высоту треугольника со сторонами 96, 73 и 41
Найти высоту треугольника со сторонами 124, 95 и 90
Найти высоту треугольника со сторонами 144, 87 и 66
Найти высоту треугольника со сторонами 94, 83 и 30
Найти высоту треугольника со сторонами 81, 80 и 27
Найти высоту треугольника со сторонами 96, 73 и 41
Найти высоту треугольника со сторонами 124, 95 и 90
Найти высоту треугольника со сторонами 144, 87 и 66
Найти высоту треугольника со сторонами 94, 83 и 30
Найти высоту треугольника со сторонами 81, 80 и 27