Рассчитать высоту треугольника со сторонами 106, 90 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 90 + 62}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-106)(129-90)(129-62)}}{90}\normalsize = 61.8751072}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-106)(129-90)(129-62)}}{106}\normalsize = 52.5354684}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-106)(129-90)(129-62)}}{62}\normalsize = 89.818704}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 90 и 62 равна 61.8751072
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 90 и 62 равна 52.5354684
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 90 и 62 равна 89.818704
Ссылка на результат
?n1=106&n2=90&n3=62
Найти высоту треугольника со сторонами 69, 52 и 48
Найти высоту треугольника со сторонами 45, 42 и 24
Найти высоту треугольника со сторонами 149, 142 и 20
Найти высоту треугольника со сторонами 99, 75 и 36
Найти высоту треугольника со сторонами 126, 120 и 36
Найти высоту треугольника со сторонами 69, 57 и 41
Найти высоту треугольника со сторонами 45, 42 и 24
Найти высоту треугольника со сторонами 149, 142 и 20
Найти высоту треугольника со сторонами 99, 75 и 36
Найти высоту треугольника со сторонами 126, 120 и 36
Найти высоту треугольника со сторонами 69, 57 и 41