Рассчитать высоту треугольника со сторонами 106, 91 и 22

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 91 + 22}{2}} \normalsize = 109.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109.5(109.5-106)(109.5-91)(109.5-22)}}{91}\normalsize = 17.3108971}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109.5(109.5-106)(109.5-91)(109.5-22)}}{106}\normalsize = 14.8612419}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109.5(109.5-106)(109.5-91)(109.5-22)}}{22}\normalsize = 71.6041654}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 91 и 22 равна 17.3108971
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 91 и 22 равна 14.8612419
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 91 и 22 равна 71.6041654
Ссылка на результат
?n1=106&n2=91&n3=22