Рассчитать высоту треугольника со сторонами 106, 93 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 93 + 29}{2}} \normalsize = 114}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114(114-106)(114-93)(114-29)}}{93}\normalsize = 27.4387029}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114(114-106)(114-93)(114-29)}}{106}\normalsize = 24.0735789}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114(114-106)(114-93)(114-29)}}{29}\normalsize = 87.9930816}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 93 и 29 равна 27.4387029
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 93 и 29 равна 24.0735789
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 93 и 29 равна 87.9930816
Ссылка на результат
?n1=106&n2=93&n3=29
Найти высоту треугольника со сторонами 139, 86 и 60
Найти высоту треугольника со сторонами 61, 56 и 18
Найти высоту треугольника со сторонами 102, 89 и 89
Найти высоту треугольника со сторонами 81, 80 и 12
Найти высоту треугольника со сторонами 129, 101 и 64
Найти высоту треугольника со сторонами 112, 93 и 27
Найти высоту треугольника со сторонами 61, 56 и 18
Найти высоту треугольника со сторонами 102, 89 и 89
Найти высоту треугольника со сторонами 81, 80 и 12
Найти высоту треугольника со сторонами 129, 101 и 64
Найти высоту треугольника со сторонами 112, 93 и 27