Рассчитать высоту треугольника со сторонами 106, 93 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 93 + 79}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-106)(139-93)(139-79)}}{93}\normalsize = 76.5184137}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-106)(139-93)(139-79)}}{106}\normalsize = 67.13408}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-106)(139-93)(139-79)}}{79}\normalsize = 90.0786389}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 93 и 79 равна 76.5184137
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 93 и 79 равна 67.13408
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 93 и 79 равна 90.0786389
Ссылка на результат
?n1=106&n2=93&n3=79
Найти высоту треугольника со сторонами 123, 114 и 58
Найти высоту треугольника со сторонами 115, 112 и 84
Найти высоту треугольника со сторонами 64, 63 и 56
Найти высоту треугольника со сторонами 101, 79 и 36
Найти высоту треугольника со сторонами 147, 143 и 22
Найти высоту треугольника со сторонами 94, 52 и 49
Найти высоту треугольника со сторонами 115, 112 и 84
Найти высоту треугольника со сторонами 64, 63 и 56
Найти высоту треугольника со сторонами 101, 79 и 36
Найти высоту треугольника со сторонами 147, 143 и 22
Найти высоту треугольника со сторонами 94, 52 и 49