Рассчитать высоту треугольника со сторонами 106, 95 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 95 + 59}{2}} \normalsize = 130}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130(130-106)(130-95)(130-59)}}{95}\normalsize = 58.6201444}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130(130-106)(130-95)(130-59)}}{106}\normalsize = 52.5369219}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130(130-106)(130-95)(130-59)}}{59}\normalsize = 94.3883681}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 95 и 59 равна 58.6201444
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 95 и 59 равна 52.5369219
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 95 и 59 равна 94.3883681
Ссылка на результат
?n1=106&n2=95&n3=59
Найти высоту треугольника со сторонами 116, 114 и 76
Найти высоту треугольника со сторонами 114, 99 и 71
Найти высоту треугольника со сторонами 102, 99 и 91
Найти высоту треугольника со сторонами 144, 115 и 46
Найти высоту треугольника со сторонами 123, 92 и 37
Найти высоту треугольника со сторонами 141, 124 и 26
Найти высоту треугольника со сторонами 114, 99 и 71
Найти высоту треугольника со сторонами 102, 99 и 91
Найти высоту треугольника со сторонами 144, 115 и 46
Найти высоту треугольника со сторонами 123, 92 и 37
Найти высоту треугольника со сторонами 141, 124 и 26