Рассчитать высоту треугольника со сторонами 106, 98 и 25

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 98 + 25}{2}} \normalsize = 114.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114.5(114.5-106)(114.5-98)(114.5-25)}}{98}\normalsize = 24.4663743}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114.5(114.5-106)(114.5-98)(114.5-25)}}{106}\normalsize = 22.6198555}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114.5(114.5-106)(114.5-98)(114.5-25)}}{25}\normalsize = 95.9081873}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 98 и 25 равна 24.4663743
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 98 и 25 равна 22.6198555
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 98 и 25 равна 95.9081873
Ссылка на результат
?n1=106&n2=98&n3=25