Рассчитать высоту треугольника со сторонами 107, 100 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 100 + 18}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-107)(112.5-100)(112.5-18)}}{100}\normalsize = 17.0985197}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-107)(112.5-100)(112.5-18)}}{107}\normalsize = 15.9799249}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-107)(112.5-100)(112.5-18)}}{18}\normalsize = 94.991776}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 100 и 18 равна 17.0985197
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 100 и 18 равна 15.9799249
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 100 и 18 равна 94.991776
Ссылка на результат
?n1=107&n2=100&n3=18
Найти высоту треугольника со сторонами 103, 60 и 52
Найти высоту треугольника со сторонами 126, 109 и 91
Найти высоту треугольника со сторонами 138, 100 и 70
Найти высоту треугольника со сторонами 66, 64 и 49
Найти высоту треугольника со сторонами 145, 98 и 81
Найти высоту треугольника со сторонами 61, 51 и 19
Найти высоту треугольника со сторонами 126, 109 и 91
Найти высоту треугольника со сторонами 138, 100 и 70
Найти высоту треугольника со сторонами 66, 64 и 49
Найти высоту треугольника со сторонами 145, 98 и 81
Найти высоту треугольника со сторонами 61, 51 и 19