Рассчитать высоту треугольника со сторонами 107, 101 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 101 + 19}{2}} \normalsize = 113.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113.5(113.5-107)(113.5-101)(113.5-19)}}{101}\normalsize = 18.4856251}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113.5(113.5-107)(113.5-101)(113.5-19)}}{107}\normalsize = 17.449048}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113.5(113.5-107)(113.5-101)(113.5-19)}}{19}\normalsize = 98.2656915}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 101 и 19 равна 18.4856251
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 101 и 19 равна 17.449048
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 101 и 19 равна 98.2656915
Ссылка на результат
?n1=107&n2=101&n3=19
Найти высоту треугольника со сторонами 125, 119 и 67
Найти высоту треугольника со сторонами 72, 61 и 31
Найти высоту треугольника со сторонами 147, 133 и 131
Найти высоту треугольника со сторонами 144, 124 и 88
Найти высоту треугольника со сторонами 146, 84 и 83
Найти высоту треугольника со сторонами 119, 115 и 75
Найти высоту треугольника со сторонами 72, 61 и 31
Найти высоту треугольника со сторонами 147, 133 и 131
Найти высоту треугольника со сторонами 144, 124 и 88
Найти высоту треугольника со сторонами 146, 84 и 83
Найти высоту треугольника со сторонами 119, 115 и 75