Рассчитать высоту треугольника со сторонами 107, 101 и 33

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 101 + 33}{2}} \normalsize = 120.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120.5(120.5-107)(120.5-101)(120.5-33)}}{101}\normalsize = 32.9906112}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120.5(120.5-107)(120.5-101)(120.5-33)}}{107}\normalsize = 31.1406704}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120.5(120.5-107)(120.5-101)(120.5-33)}}{33}\normalsize = 100.971265}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 101 и 33 равна 32.9906112
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 101 и 33 равна 31.1406704
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 101 и 33 равна 100.971265
Ссылка на результат
?n1=107&n2=101&n3=33