Рассчитать высоту треугольника со сторонами 107, 101 и 77
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 101 + 77}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-107)(142.5-101)(142.5-77)}}{101}\normalsize = 73.4302368}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-107)(142.5-101)(142.5-77)}}{107}\normalsize = 69.3126535}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-107)(142.5-101)(142.5-77)}}{77}\normalsize = 96.3175834}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 101 и 77 равна 73.4302368
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 101 и 77 равна 69.3126535
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 101 и 77 равна 96.3175834
Ссылка на результат
?n1=107&n2=101&n3=77
Найти высоту треугольника со сторонами 142, 98 и 64
Найти высоту треугольника со сторонами 133, 130 и 9
Найти высоту треугольника со сторонами 63, 47 и 25
Найти высоту треугольника со сторонами 132, 125 и 23
Найти высоту треугольника со сторонами 114, 74 и 45
Найти высоту треугольника со сторонами 68, 57 и 22
Найти высоту треугольника со сторонами 133, 130 и 9
Найти высоту треугольника со сторонами 63, 47 и 25
Найти высоту треугольника со сторонами 132, 125 и 23
Найти высоту треугольника со сторонами 114, 74 и 45
Найти высоту треугольника со сторонами 68, 57 и 22