Рассчитать высоту треугольника со сторонами 107, 102 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 102 + 24}{2}} \normalsize = 116.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116.5(116.5-107)(116.5-102)(116.5-24)}}{102}\normalsize = 23.8896318}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116.5(116.5-107)(116.5-102)(116.5-24)}}{107}\normalsize = 22.7732939}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116.5(116.5-107)(116.5-102)(116.5-24)}}{24}\normalsize = 101.530935}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 102 и 24 равна 23.8896318
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 102 и 24 равна 22.7732939
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 102 и 24 равна 101.530935
Ссылка на результат
?n1=107&n2=102&n3=24
Найти высоту треугольника со сторонами 84, 54 и 41
Найти высоту треугольника со сторонами 30, 26 и 19
Найти высоту треугольника со сторонами 114, 81 и 58
Найти высоту треугольника со сторонами 130, 96 и 86
Найти высоту треугольника со сторонами 133, 120 и 48
Найти высоту треугольника со сторонами 140, 79 и 69
Найти высоту треугольника со сторонами 30, 26 и 19
Найти высоту треугольника со сторонами 114, 81 и 58
Найти высоту треугольника со сторонами 130, 96 и 86
Найти высоту треугольника со сторонами 133, 120 и 48
Найти высоту треугольника со сторонами 140, 79 и 69