Рассчитать высоту треугольника со сторонами 107, 102 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 102 + 37}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-107)(123-102)(123-37)}}{102}\normalsize = 36.9658966}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-107)(123-102)(123-37)}}{107}\normalsize = 35.2385182}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-107)(123-102)(123-37)}}{37}\normalsize = 101.905985}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 102 и 37 равна 36.9658966
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 102 и 37 равна 35.2385182
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 102 и 37 равна 101.905985
Ссылка на результат
?n1=107&n2=102&n3=37
Найти высоту треугольника со сторонами 99, 76 и 28
Найти высоту треугольника со сторонами 100, 80 и 47
Найти высоту треугольника со сторонами 102, 96 и 66
Найти высоту треугольника со сторонами 109, 105 и 6
Найти высоту треугольника со сторонами 61, 53 и 50
Найти высоту треугольника со сторонами 94, 64 и 54
Найти высоту треугольника со сторонами 100, 80 и 47
Найти высоту треугольника со сторонами 102, 96 и 66
Найти высоту треугольника со сторонами 109, 105 и 6
Найти высоту треугольника со сторонами 61, 53 и 50
Найти высоту треугольника со сторонами 94, 64 и 54